
XXXXX(d) : 2018

CONFIGURATION MANAGEMENT —
NEREON CONFIGURATION MODEL —

OBJECT CONFIGURATION AND
SCHEMA SYNTAX

Ribose Group Inc. 2018

RIBOSE STANDARD

DRAFT STANDARD

WARNING FOR DRAFTS

This document is not a Ribose Standard. It is distributed for review and
comment, and is subject to change without notice and may not be referred to as
a Standard. Recipients of this draft are invited to submit, with their comments,

noti�cation of any relevant patent rights of which they are aware and to provide
supporting documentation.

CONTENTS

FOREWORD
INTRODUCTION
1. SCOPE
2. NORMATIVE REFERENCES
3. TERMS, DEFINITIONS, SYMBOLS AND ABBREVIATED TERMS

3.1. TERMS AND DEFINITIONS
3.2. SYMBOLS AND ABBREVIATED TERMS

4. NEREON CONFIGURATION AND SCHEMA SYNTAX
4.1. DOCUMENT STRUCTURE
4.2. INTERPOLATION

BIBLIOGRAPHY

FOREWORD

Ribose is the asymmetric security company.

Ribose Group Inc. ("Ribose") is global developer of asymmetric security technologies
across user-centric systems and applications.

Ribose works closely with international organizations such as ISO, CalConnect and the
Cloud Security Alliance.

The procedures used to develop this document and those intended for its further
maintenance are described in the Ribose Standardization Directives.

In particular the different approval criteria needed for the different types of Ribose
documents should be noted. This document was drafted in accordance with the editorial
rules of the Ribose Standardization Directives.

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. Ribose shall not be held responsible for identifying any or all
such patent rights. Details of any patent rights identi�ed during the development of the
document will be in the Introduction.

Any trade name used in this document is information given for the convenience of users
and does not constitute an endorsement.

This document was prepared by the Ribose Committee Con�guration management.

INTRODUCTION

The Nereon project aims to unify and glue together cloud con�guration management
through the Nereon data models.

The Nereon Object Con�guration syntax (NOC) and Nereon Object Con�guration
Schema syntax (NOS) are methods used to express con�guration settings in Nereon data
models, and can also be used as interchangeable �les.

Nereon models: https://github.com/riboseinc/nereon-models

https://github.com/riboseinc/nereon-models

Nereon is a play on Nereus, the shapeshifting sea god of the Greeks, the eldest son of
Pontus and Gaia. "Nereon" literally means "place of Nereus", representing the shape-
shifting nature of con�guration.

1. SCOPE

This document de�nes the Nereon Object Con�guration Syntax (NOC) and Nereon
Object Con�guration Schema Syntax (NOS).

(TODO.)

2. NORMATIVE REFERENCES

There are no normative references in this document.

3. TERMS, DEFINITIONS, SYMBOLS AND ABBREVIATED
TERMS

For the purposes of this document, the following terms and de�nitions apply.

3.1. Terms and de�nitions

3.1.1
user

person that utilizes a service

3.1.2
access control

TODO.

3.1.3
author

TODO.

3.1.4
role

TODO.

3.1.5
classi�cation

TODO.

3.1.6
classi�cation label

TODO.

3.1.7
content addressable storage

TODO.

3.1.8
forward secrecy

method such that user of revoked access is unable to access data created after access
revocation

Note 1 to entry: Refer to section 6.3

3.1.9
public key infrastructure
PKI

TODO.

3.1.10
blockcipher

encryption algorithm that encrypts a plaintext into an equivalent sized ciphertext, using
an identical key for encryption and decryption

3.2. Symbols and abbreviated terms

Encryption of the message using a key of an asymmetric keypair

Decryption of the message using a key of an asymmetric keypair

Symmetric encryption, through the blockcipher , of the message
 using the key

Symmetric decryption, through the blockcipher , of the message
 using the key

E(K, m) m

K

D(K, m) m

K

BCE(K, m) BC

m K

BCD(K, m) BC

m K

4. NEREON CONFIGURATION AND SCHEMA SYNTAX

Nereon con�gurations (NOC) and schemas (NOS) are described using Nereon object
notation (NON). NON is a structured con�guration language in�uenced by JSON, UCL
and HCL using a syntax in�uenced by traditional shell interfaces.

NON templates can be de�ned to capture and reuse values and NON interpolation
functions provide a mechanism for manipulating values when con�guration is parsed.

4.1. Document Structure

NON de�nes three types of value; table, list and string. A table is a list of named values
where names are strings. A list is an ordered list of values. A string is a textual
representation of data.

NON data MUST be utf8 encoded.

A NON document comprises a single NON table value.

4.1.1. Special Characters

There are a number of characters that have special meaning within a NON document. All
other characters are considered part of a string value. The special characters are:

Table 1

Character ASCII Meaning

SPC 32 Separates keys and values in a table and surrounds in�x
operators

TAB 9 Separates keys and values in a table and surrounds in�x
operators

(40 Marks the start of the parameter list for interpolation functions

) 41 Marks the end of the parameter list for interpolation functions

{ 123 Marks the start of a table value

} 125 Marks the end of a table value

[91 Marks the start of a list value

] 93 Marks the end of a list value

" 34 Marks the start and end of a quoted string

35 Marks the beginning of a comment

$ 36 Marks a template application without parameters

CR 10 Separates entries within tables, lists and parameter lists

, 44 Separates entries within tables, lists and parameter lists

\ 92 Indicates an escape sequence

4.1.2. String

Strings can be either bare or quoted. A bare string comprises one or more characters not
listed in the 'Special Characters' section above.

The following Special characters can be included within a bare string if they are escaped
with the backslash (\ ASCII 92) character.

Table 2

Sequence Meaning ASCII

\(Open brace 40

\) Close brace 41

\{ Open curly brace 123

\} Close curly brace 125

\[Open square brace 91

\] Close square brace 93

\# Hash sign 35

\$ Dollar sign 35

\, Comma 44

`\ ` Space 32

Quoted strings are enclosed in double quotation marks (" ASCII 34) and may contain any
of the Special Characters above with the exception of \ (ASCII 92) and " (ASCII 34).
\ and " must always be escaped.

The following escape sequences are recognised in both bare and quoted strings:

Table 3

Escape
Sequence

ASCII Character represented

\n 10 Newline (Line Feed)

\r 13 Carriage Return

\t 9 Horizontal Tab

\\ 92 Backslash

\' 39 Single quotation mark

\" 34 Double quotation mark

\0nn any The byte whose numerical value is given by 0nn interpreted
as an octal number

\xhh any The byte whose numerical value is given by hh interpreted as
a hexadecimal number

\Uhhhhhhhh none Unicode code point where h is a hexadecimal digit

\uhhhh none Unicode code point below 10000 hexadecimal

Multi-line strings are permitted as long as they are quoted.

Examples:

"The Rachel Papers"
Success
Money
"Time's Arrow"

4.1.3. List

A list is an ordered set of values. Lists are enclosed in square braces ([] ASCII 91/93).
Within the braces are zero or more values separated by one or more comma (, ASCII 44)
or newline (ASCII 10) characters. Values are numbered, starting at zero. Numbers are
assigned to each value in the order in which they are de�ned.

Example:

[
 Aglovale, Breunor, Claudin
 Calogrenant, Dinadan, "Elyan the White"

 Erec, Galeschin, Gornemant,
 "Hector de Maris", Lucan,
 "Meliant de Lis", Morholt
 Sa�r, Segwarides, Tor
]

4.1.4. Table

A table is an unordered set of key and value pairs. A table is enclosed in curly braces ({}
ASCII 123/125). Within the braces are zero or more key/value pairs. Pairs are separated
by one or more comma (, ASCII 44) or newline (ASCII 10) characters. Keys are strings.
Table entries are de�ned by specifying a key and a value separated by any combination of
space (` ` ASCII 32) and tab (\t` ASCII 9) characters. Keys are unique with a table. If a key
appears more than once in a table de�nition the last value is the only one retained by the
table.

Example:

contact {
 name "John Doe"
 email {
 work "john.doe@work.domain"
 home "john@home.domain"
 }
}

An additional syntax is de�ned for table entries where multiple keys precede the value.
This syntax is only permitted within a table value and has the effect of recursively
de�ning implicit nested table values with the initial keys. The �nal key and the value are
used to create an entry within the most deeply nested table value. Using this syntax the
above example can be written as:

contact {
 name "John Doe"
 email work "john.doe@work.domain"
 email home "john@home.domain"
}

or

contact name "John Doe"
contact email work "john.doe@work.domain"
contact email home "john@home.domain"

4.1.5. Comment

The hash (# ASCII 35) character indicates a comment which runs up to the next CR (\n
ASCII 10).

4.2. Interpolation

Values are interpolated when a NON document is parsed.

4.2.1. Arithmetic interpolation

Simple arithmetic is supported with the binary operators -, +, *, /, \, % and ^. Binary
operators must appear between to values and must be surrounded by one or more space
(ASCII 32) or tab (ASCII 9) characters. The operators correspond respectively with the
functions subtract(), add(), multiply(), divide(), intdiv(), modulus() and
power() described below.

port 8000 + 80 # port "8080"
port 8000+80 # port "8000+80", probably not intentional!

4.2.2. Template interpolation

Template values can be de�ned with the let() construct and reused later on in the
document. Template values may or may not accept arguments which will affect their
expansion.

Within a template, arguments can be extracted using the arg(n) construct where n is
the zero-based argument index.

Templates are applied by using the apply() construct. Templates without arguments
can be applied using a special $name construct which is syntactic sugar for
apply(name).

let(base_port, 8000)
let(port, $base_port + arg(0))

port1 apply(port(80)) # port 8080
port2 apply(port(81)) # port 8081
port3 $base_port + 82 #port 8082

4.2.3. Functions

NON uses the name(args) construct for functions where name is a bare string and args
is a comma separated list of zero or more arguments each of which is a valid NON value.
The correct number of arguments will vary depending on the function.

A NON parser supports at least the following basic functions:

Table 4

Function Result

add(a, b) a + b

subtract(a, b) a - b

multiply(a, b) a × b

divide(a, b) a ÷ b

intdiv(a, b) a ÷ b, a and b are integers, result rounded towards zero

modulus(a, b) remainder of a ÷ b, a and b are integers

power(a, b) ab

A parser may also permit user de�ned functions to be registered prior to parsing.

BIBLIOGRAPHY

[1] Shared generation of RSA keys, Michael Malkin, Thomas D. Wu, Dan Boneh.
Experimenting with Shared Generation of RSA keys. NDSS 1999.

